alluxio Documentation
Release 0.1.1

Alluxio, Inc

Feb 07, 2019

Contents

1 Client Interface

2 Client Options

3 Client Wire Objects
4 Client Exceptions

Python Module Index

11

15

21

25

CHAPTER 1

Client Interface

Alluxio client, reader, and writer.

This module contains the Alluxio Client. The Reader and Writer are returned by certain I/O methods of the Client,
they are not intended to be created by the API user.

The Client is based on Alluxio proxy server’s REST API, all HTTP requests are handled by the requests library.

class alluxio.Client (host, port, timeout=1800)
Alluxio client.

Parameters
* host (str)— Alluxio proxy server’s hostname.
* port (int)— Alluxio proxy server’s web port.

* timeout (int, optional)— Seconds to wait for the REST server to respond before
giving up. Defaults to 1800.

close (file_id)
Close a file.

When calling open () using a with statement, this method is automatically invoked when exiting the with
block.

Parameters file_id (int)— The file ID returned by open_file () or create file ().
Raises
e alluxio.exceptions.NotFoundError —If the path does not exist.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

create_directory (path, opt=None)
Create a directory in Alluxio.

http://www.alluxio.org/restdoc/master/proxy/index.html
http://requests.readthedocs.io/en/master/api/

alluxio Documentation, Release 0.1.1

By default, the create directory operation enforces that the parent of the given path must exist and the path
itself does not already exist. The directory will be created with access mode bits ‘drwxr-xr-x’. The created
directory will only exist in Alluxio and not in any of its under storages. You can change the behavior by
setting optional parameters in kwargs.

Parameters
e path (str) — The path of the directory to be created.

* opt (alluxio.option.CreateDirectory)— Options to be used when creating a
directory.

Raises

e alluxio.exceptions.AlreadyExistsError —If thereis already a file or direc-
tory at the given path.

* alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

* alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

Examples

Create a directory recursively:

>>> opt = alluxio.option.CreateDirectory (recursive=True)
>>> create_directory('/parent/child/', opt)

Create a directory recursively and persist to under storage:

>>> opt = alluxio.option.CreateDirectory(recursive=True, write_type=wire.
—WRITE_TYPE_CACHE_THROUGH)
>>> create_directory('/parent/child/"', opt)

create_file (path, opt=None)
Create a file in Alluxio.

The file must not already exist and must be closed by calling al luxio.Client.close ().
A preferred way to write to a file is to use open (), see its documentation for details.
Parameters
* path (str) - The Alluxio path.
* opt (alluxio.option.CreateF1ile)— Options to be used when creating a file.

Returns The file ID, which can be passed to alluxio.Client.write() and alluxio.
Client.close().

Return type int
Raises

e alluxio.exceptions.AlreadyExistsError —Ifthereis already a file or direc-
tory at the given path.

e alluxio.exceptions.InvalidArgumentError — If the path is invalid.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

2 Chapter 1. Client Interface

alluxio Documentation, Release 0.1.1

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

Examples

Create a file and write a string to it both in Alluxio and the under storage, finally close it:

>>> opt = alluxio.option.CreateFile (write_type=wire.WRITE_TYPE_CACHE_THROUGH)
>>> file_id = create_file('/file', opt)

>>> writer = write(file_id)

>>> writer.write('data')

>>> writer.close ()

>>> close (file_id)

delete (path, opt=None)
Delete a directory or file in Alluxio.

By default, if path is a directory which contains files or directories, this method will fail. You can change
the behavior by setting optional parameters in kwargs.

Parameters

e path (str) - The path of the directory or file to be deleted.

* opt (alluxio.option.Delete)— Options to be used when deleting a path.
Raises

e alluxio.exceptions.NotFoundError —If the path does not exist.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

exists (path, opt=None)
Check whether a path exists in Alluxio.

Parameters
e path (str) - The Alluxio path.

* opt (alluxio.option.Exists)—Options tobe used when checking whether a path
exists.

Returns True if the path exists, False otherwise.
Return type bool
Raises
e alluxio.exceptions.InvalidArgumentError — If the path is invalid.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

free (path, opt=None)
Free a file or directory from Alluxio.

alluxio Documentation, Release 0.1.1

By default, if the given path is a directory, its files and contained directories won’t be freed recursively.
You can change the behavior by setting optional parameters in kwargs.

Parameters

e path (str) - The Alluxio path.

* opt (alluxio.option.Free)— Options to be used when freeing a path.
Raises

e alluxio.exceptions.NotFoundError —If the path does not exist.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises

an error.

get_status (path, opt=None)
Get the status of a file or directory at the given path.

Parameters
* path (str) - The Alluxio path.

* opt (alluxio.option.GetStatus)— Options to be used when getting the status of
a path.

Returns The information of the file or directory.
Return type alluxio.wire.Filelnfo
Raises
e alluxio.exceptions.NotFoundError —If the path does not exist.

* alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

list_status (path, opt=None)
List the status of a file or directory at the given path.

Parameters
e path (str) - The Alluxio path, which should be a directory.
e opt (alluxio.option.ListStatus)— Options to be used when listing status.
Returns List of information of files and direcotries under path.
Return type Listof alluxio.wire.FileInfo
Raises
e alluxio.exceptions.NotFoundError —If the path does not exist.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises

an error.

Chapter 1. Client Interface

alluxio Documentation, Release 0.1.1

1s (path, opt=None)
List the names of the files and directories under path.

To get more information of the files and directories under path, call 1ist_status ().
Parameters
* path (str) - The Alluxio path, which should be a directory.
e opt (alluxio.option.ListStatus)— Options to be used when listing status.
Returns A list of names of the files and directories under path.
Return type List of str
Raises
e alluxio.exceptions.NotFoundError —If the path does not exist.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

mount (path, src, opt=None)
Mount an under storage specified by src to path in Alluxio.

Additional information or configuration, such as AWS credentials for mounting a S3 bucket or mounting
the under storage in read only mode, can be provided by setting optional parameters in kwargs.

Parameters
e path (str) - The Alluxio path to be mounted to.
* src (str)— The under storage endpoint to mount.

* opt (alluxio.option.Mount)— Options to be used when mounting an under stor-
age.

Raises

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

* alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

open (**kwds)
Open a file for reading or writing.

It should be called using a with statement so that the reader or writer will be automatically closed.
Parameters
e path (str) - The Alluxio file to be read from or written to.
* mode (str) — Either ‘r’ for reading or ‘w’ for writing.

e opt — For reading, it is alluxio.option.OpenFile, for writing, itis alluxio.
option.CreateFile.

Raises
e ValueError — If mode is neither ‘w’ nor ‘r’.

e alluxio.exceptions.InvalidArgumentError — If the path is invalid.

alluxio Documentation, Release 0.1.1

e alluxio.exceptions.NotFoundError—If modeis ‘r’ but the path does not exist.

e alluxio.exceptions.AlreadyExistsError — If mode is ‘w’ but the path al-
ready exists.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

Examples

Write a string to a file in Alluxio:

>>> with open('/file', 'w') as f:
>>> f.write('data')

Copy a file in local filesystem to a file in Alluxio and also persist it into Alluxio’s under storage, note that
the second :func”open is python’s built-in function:

>>> opt = alluxio.option.CreateFile (write_type=wire.WRITE_TYPE_CACHE_THROUGH)
>>> with alluxio_client.open('/alluxio-file', 'w', opt) as alluxio_file:

>>> with open('/local-file', 'rb') as local_file:

>>> alluxio_file.write(local_file)

Read the first 10 bytes of a file from Alluxio:

>>> with open('/file', 'r') as f:
>>> print f.read(10)

open_f£file (path, opt=None)
Open a file in Alluxio for reading.

The file must be closed by calling alluxio.Client.close ().
The preferred way to read a file is to use open ().
Parameters
* path (str) - The Alluxio path.
* opt (alluxio.option.OpenFile)— Options to be used when opening a file.

Returns The file ID, which can be passed to alluxio.Client.read() and alluxio.
Client.close().

Return type int
Raises
e alluxio.exceptions.NotFoundError —If the path does not exist.

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

6 Chapter 1. Client Interface

alluxio Documentation, Release 0.1.1

Examples

Open a file, read its contents, and close it:

>>> file_id = open_file('/file'")
>>> reader = read(file_id)

>>> reader.read()

>>> reader.close()

>>> close (file_id)

read (file_id)
Creates a Reader for reading a file.

Parameters file_id (int)— The file ID returned by open_file ().
Returns The reader for reading the file as a stream.
Return type Reader

rename (path, dst, opt=None)
Rename path to dst in Alluxio.

Parameters

e path (str) - The Alluxio path to be renamed.

* dst (str) - The Alluxio path to be renamed to.

e opt (alluxio.option.Rename)— Options to be used when renaming a path.
Raises

e alluxio.exceptions.NotFoundError —If the path does not exist.

* alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

* alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

set_attribute (path, opt=None)
Set attributes of a path in Alluxio.

Parameters
e path (str) - The Alluxio path.

* opt (alluxio.option.SetAttribute) — Options to be used when setting at-
tribute.

Raises
e alluxio.exceptions.NotFoundError —If the path does not exist.

* alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

unmount (path, opt=None)
Unmount an under storage that is mounted at path.

Parameters

e path (str) - The Alluxio mount point.

alluxio Documentation, Release 0.1.1

* opt (alluxio.option.Unmount)— Options to be used when unmounting an under
storage.

Raises

e alluxio.exceptions.AlluxioError — For any other exceptions thrown by Al-
luxio servers. Check the error status for additional details.

e alluxio.exceptions.HTTPError — If the underlying HTTP client library raises
an error.

write (file_id)
Creates a Writer for writing a file.

Parameters file_id (int)— The file ID returned by create_file ().
Returns The reader for reading the file as a stream.

Return type Reader

class alluxio.client .Reader (session, url)

Alluxio file reader.

The file is read as a stream; you cannot seek to a previously read section. alluxio.Reader.close () must
be called after the reading is done.

The reader can be used as an iterator where response stream is read as chunks of bytes.
This class is used by C1ient.open (), itis not intended to be created by users directly.

All operations on the reader will raise alluxio.exceptions.HTTPError if the underlying HTTP client
library raises errors and raise alluxio.exceptions.AlluxioError or its subclasses for exceptions
from Alluxio.

Parameters
* session (requests.Session)—
* url (str)— The Alluxio REST URL for reading a file.

close ()
Close the reader.

If the request fails, this is a no-op. Otherwise, the connection is released back into the pool. Once this
method has been called, read () should not be called again.

read (n=None)
Read the file stream.

Parameters n (int, optional) - The bytes to read from the stream, if n is None, it means
read the whole data stream.

Returns The data in bytes, if all data has been read, returns an empty string.

class alluxio.client .Writer (session, url)

Alluxio file writer.

A string or a file-like object can be written as a stream to an Alluxio file. alluxio.Writer.close () must
be called after the writing is done.

This class is used by C1ient.open (), itis not intended to be created by users directly.

All operations on the reader will raise al luxio.exceptions.HTTPError if the underlying HTTP client
library raises errors and raise alluxio.exceptions.AlluxioError or its subclasses for exceptions
from Alluxio.

Chapter 1. Client Interface

alluxio Documentation, Release 0.1.1

Parameters
* session (requests.Session)-—
* url (str)— The Alluxio REST URL for writing a file.

close ()
Close the writer.

If the request fails, this is a nop, otherwise, release the connection back to the pool. Once this method has
been called, the write () should not be called again.

write (data)
Write data as a stream to the file.

The consequent calls to write will append data to the file.
Parameters data — data is either a string or a file-like object in python.

Returns The number of bytes that have been written.

alluxio Documentation, Release 0.1.1

10 Chapter 1. Client Interface

CHAPTER 2

Client Options

Options for Alluxio Client methods.

Notes

All classes in this module have a json method, which converts the class into a python dict that can be encoded into a
json string.

class alluxio.option.CreateDirectory (**kwargs)
Options to be used in alluxio.Client.create_directory ().

Parameters
* allow_exists (bool)— Whether the directory can already exist.
* mode (alluxio.wire.Mode)— The directory’s access mode.

* recursive (bool)— Whether to create intermediate directories along the path as neces-
sary.

* write_type (alluxio.wire.WriteType) — Where to create the directory, e.g. in
Alluxio only, in under storage only, or in both.

class alluxio.option.CreateFile (**kwargs)
Options tobe used in alluxio.Client.create file().

Parameters
* block_size_bytes (int)— Block size of the file in bytes.

* location_policy_class (str) — The Java class name for the location policy.
If this is not specified, Alluxio will use the default value of the property key al-
luxio.user.file.write.location.policy.class.

e mode (alluxio.wire.Mode)— The file’s access mode.

* recursive (bool)—If True, creates intermediate directories along the path as necessary.

11

alluxio Documentation, Release 0.1.1

e ttl (int)-The TTL (time to live) value. It identifies duration (in milliseconds) the created
file should be kept around before it is automatically deleted. -1 means no TTL value is set.

e ttl_action (alluxio.wire.TTLAction) - The file action to take when its TTL
expires.

* write_type (alluxio.wire.WriteType) - It can be used to decide where the file
will be created, like in Alluxio only, or in both Alluxio and under storage.

* replication_durable (int)— The number of block replication for durable write.
* replication_max (int) - The maximum number of block replication.
* replication_min (int) - The minimum number of block replication.

class alluxio.option.Delete (**kwargs)
Options to be used in alluxio.Client.delete ().

Parameters recursive (bool) — If set to true for a path to a directory, the directory and its
contents will be deleted.

class alluxio.option.Exists
Options to be used in alluxio.Client.exists ().

Currently, it is an empty class, options may be added in future releases.

class alluxio.option.Free (**kwargs)
Options to be used in al luxio.Client.free().

Parameters recursive (bool) — If set to true for a path to a directory, the directory and its
contents will be freed.

class alluxio.option.GetStatus
Options to be used in alluxio.Client.get_status().

Currently, it is an empty class, options may be added in future releases.

class alluxio.option.ListStatus (**kwargs)
Options tobe used in alluxio.Client.list_status ().

Parameters load_metadata_type (alluxio.wire.LoadMetadataType)— The type of
loading metadata, can be one of alluxio.wire.LOAD METADATA_ TYPE_NEVER,
alluxio.wire.LOAD METADATA TYPE ONCE, alluxio.wire.
LOAD METADATA TYPE ALWAYS, see documentation on alluxio.wire.
LoadMetadataType for more details

class alluxio.option.Mount (**kwargs)
Options to be used in alluxio.Client.mount ().

Parameters
* properties (dict)— A dictionary mapping property key strings to value strings.
* read_only (bool)— Whether the mount point is read-only.
* shared (bool)— Whether the mount point is shared with all Alluxio users.

class alluxio.option.Unmount
Options to be used in a1 luxio.Client.unmount ().

Currently, it is an empty class, options may be added in future releases.

class alluxio.option.OpenFile (**kwargs)
Options to be used in alluxio.Client.open_file().

Parameters

12 Chapter 2. Client Options

alluxio Documentation, Release 0.1.1

class alluxio

cache_location_policy_class (str)— The Java class name for the location pol-
icy to be used when caching the opened file. If this is not specified, Alluxio will use the
default value of the property key alluxio.user.file.write.location.policy.class.

max_ufs_read_concurrency (int)— The maximum UFS read concurrency for one
block on one Alluxio worker.

read_type (alluxio.wire.ReadType) — The read type, like whether the file read
should be cached, if this is not specified, Alluxio will use the default value of the property
key alluxio.user.file.readtype.default.

ufs_read_location_policy_ class (str) - The Java class name for the location
policy to be used when reading from under storage. If this is not specified, Alluxio will use
the default value of the property key alluxio.user.ufs.block.read.location.policy.

.option.Rename

Options to be used in alluxio.Client.rename ().

Currently, it is an empty class, options may be added in future releases.

class alluxio

.option.SetAttribute (**kwargs)

Options to be used in alluxio.Client.set_attribute ().

Parameters

owner (str)— The owner of the path.
group (str) — The group of the path.
mode (alluxio.wire.Mode)— The access mode of the path.

pinned (bool) — Whether the path is pinned in Alluxio, which means it should be kept in
memory.

recursive (bool)— Whether to set ACL (access control list) recursively under a direc-
tory.

ttl (int) — The TTL (time to live) value. It identifies duration (in milliseconds) the file
should be kept around before it is automatically deleted. -1 means no TTL value is set.

ttl_action (alluxio.wire.TTLAction) — The file action to take when its TTL
expires.

13

alluxio Documentation, Release 0.1.1

14 Chapter 2. Client Options

CHAPTER 3

Client Wire Objects

Classes in this module define the wire format of the data sent from the REST API server.

All the classes in this module have a json method and a from_json static method. The json method converts the class
instance to a python dictionary that can be encoded into a json string. The from_json method decodes a json string
into a class instance.

class alluxio.wire.Bits (name=")
String representation of the access mode’s bits.

Parameters name (st r)— The string representation of the access mode.

Examples

The unix mode bits wrx can be represented as BITS_ALL.
Existing instances are:

* BITS NONE

* BITS EXECUTE

e BITS WRITE

® BITS WRITE EXECUTE

* BITS READ

* BITS READ EXECUTE

e BITS READ _WRITE

e BITS ALL
alluxio.wire.BITS _NONE = "NONE"
No access.
alluxio.wire.BITS_EXECUTE = "EXECUTE"

Execute access.

15

alluxio Documentation, Release 0.1.1

alluxio.wire.BITS_WRITE = "WRITE"
Write access.

alluxio.wire.BITS WRITE_EXECUTE = "WRITE_ EXECUTE"
Write and execute access.

alluxio.wire.BITS_READ = "READ"
Read access.

alluxio.wire.BITS READ EXECUTE = "READ EXECUTE"
Read and execute access.

alluxio.wire.BITS READ WRITE = "READ WRITE"
Read and write access.

alluxio.wire.BITS_ALL = "ALL"
Read, write, and execute access

class alluxio.wire.BlockInfo (block_id=0, length=0, locations=[])
A block’s information.

Parameters
* block_id (int) - Block ID.
* length (int) — Block size in bytes.
e locations (listof alluxio.wire.BlockLocation)— List of file block locations.

class alluxio.wire.BlockLocation (worker_id=0, worker_address={"dataPort": 0, "host": ""
"rpcPort": 0, "webPort": 0}, tier_alias="")

s

A block’s location.
Parameters
* worker_id (int) - ID of the worker that contains the block.

* worker address (alluxio.wire.WorkerNetAddress)— Address of the worker
that contains the block.

* tier_alias (str)-— Alias of the Alluxio storage tier that contains the block, for example,
MEM, SSD, or HDD.

class alluxio.wire.FileBlockInfo (block_info={"length": 0, "blockld": 0, "locations": []}, off-
set=0, ufs_locations=[])
A file block’s information.
Parameters

* block_info (alluxio.wire.BlockInfo)— The block’s information.
e offset (int) - The block’s offset in the file.
* ufs_locations (list of str)-Theunder storage locations that contain this block.

class alluxio.wire.FileInfo (block_ids=[], block_size_bytes=0, cacheable=Fulse, com-
pleted=False, creation_time_ms=0, last_modification_time_ms=0,
file_block_infos=[], file_id=0, folder=False, owner=", group="",
in_memory_percentage=0, length=0, name=", path=", ufs_path="",
pinned=False, persisted=False, persistence_state=", mode=0,

mount_point=False, ttl=0, ttl_action="")
A file or directory’s information.

Two FileInfo are comparable based on the attribute name. So a list of F'i 1e Info can be sorted by python’s
built-in sort function.

16 Chapter 3. Client Wire Objects

alluxio Documentation, Release 0.1.1

Parameters

class alluxio.

block_ids (1ist of int)-— Listof block IDs.

block_size_bytes (int) - Block size in bytes.

cacheable (bool) — Whether the file can be cached in Alluxio.

completed (bool)— Whether the file has been marked as completed.
creation_time_ms (int)— The epoch time the file was created.
last_modification_time_ms (int) — The epoch time the file was last modified.

file_block_infos (listof alluxio.wire.FileBlockInfo)— List of file block
information.

file_id (int)-File ID.

folder (bool)— Whether this is a directory.

owner (str)— Owner of this file or directory.

group (str)— Group of this file or directory.

in_memory percentage (int)— Percentage of the in memory data.
length (int) - File size in bytes.

name (str) — File name.

path (str)— Absolute file path.

ufs_path (str)— Under storage path of this file.

pinned (bool)— Whether the file is pinned.

persisted (bool)— Whether the file is persisted.
persistence_state (alluxio.wire.PersistenceState) — Persistence state.
mode (int) — Access mode of the file or directory.

mount_point (bool)— Whether this is a mount point.

ttl (int)—The TTL (time to live) value. It identifies duration (in milliseconds) the created
file should be kept around before it is automatically deleted. -1 means no TTL value is set.

ttl_action (alluxio.wire.TTLAction) — The file action to take when its TTL
expires.

wire.LoadMetadataType (name=")

The way to load metadata.

This can be one of the following, see their documentation for details:

e LOAD _METADATA TYPE NEVER

e LOAD METADATA TYPE_ONCE

e LOAD METADATA TYPE_ALWAYS

Parameters name (st r)— The string representation of the way to load metadata.

alluxio.wire.LOAD METADATA TYPE NEVER = "Never"
Never load metadata.

17

alluxio Documentation, Release 0.1.1

alluxio.wire.LOAD_METADATA_ TYPE_ONCE = "Once"
Load metadata only at the first time of listing status on a directory.

alluxio.wire.LOAD METADATA TYPE ALWAYS = "Always"
Always load metadata when listing status on a directory.

i

class alluxio.wire.Mode (owner_bits="", group_bits="", other_bits="")

A file’s access mode.
Parameters
* owner_bits (alluxio.wire.Bits)— Access mode of the file’s owner.
* group_bits (alluxio.wire.Bits)— Access mode of the users in the file’s group.

e other_bits (alluxio.wire.Bits) — Access mode of others who are neither the
owner nor in the group.

class alluxio.wire.ReadType (name=")
Convenience modes for commonly used read types.

This can be one of the following, see their documentation for details:
e READ TYPE NO_CACHE
* READ TYPFE CACHE

* READ TYPE_CACHE_PROMOTE
Parameters name (str)— The string representation of the read type.

alluxio.wire.READ_TYPE NO_CACHE = "NO_CACHE"
Read the file and skip Alluxio storage. This read type will not cause any data migration or eviction in Alluxio
storage.

alluxio.wire.READ_TYPE CACHE = "CACHE"
Read the file and cache it in the highest tier of a local worker. This read type will not move data between tiers
of Alluxio Storage. Users should use READ TYPE_CACHE_PROMOTE for more optimized performance with
tiered storage.

alluxio.wire.READ_TYPE_CACHE_PROMOTE = "CACHE_PROMOTE"
Read the file and cache it in a local worker. Additionally, if the file was in Alluxio storage, it will be promoted
to the top storage layer.

class alluxio.wire.TTLAction (name=")
Represent the file action to take when its TTL expires.

This can be one of the following, see their documentation for details:
e TTI, ACTION_ DELETE

e TTL, ACTION_FREE
Parameters name (str)— The string representation of the read type.
alluxio.wire.TTL_ACTION_DELETE = "DELETE"

Represents the action of deleting a path.

alluxio.wire.TTL_ACTION_FREE = "FREE"
Represents the action of freeing a path.

class alluxio.wire.WorkerNetAddress (host=", rpc_port=0, data_port=0, web_port=0)
Worker network address.

18 Chapter 3. Client Wire Objects

alluxio Documentation, Release 0.1.1

Parameters
* host (str) - Worker’s hostname.
* rpc_port (int) — Port of the worker’s RPC server.
e data_port (int)— Port of the worker’s data server.
* web_port (int) — Port of the worker’s web server.

class alluxio.wire.WriteType (name=")
Write types for creating a file.

This can be one of the following, see their documentation for details:

* WRITE_TYPE MUST CACHE

WRITE _TYPE CACHE _THROUGH

L]

WRITE_TYPE THROUGH

WRITE_TYPE ASYNC THROUGH
Parameters name (str)— The string representation of the write type.

alluxio.wire.WRITE_TYPE_MUST CACHE = "MUST_CACHE"
Write the file, guaranteeing the data is written to Alluxio storage or failing the operation. The data will be
written to the highest tier in a worker’s storage. Data will not be persisted to the under storage.

alluxio.wire.WRITE_TYPE_CACHE_ THROUGH = "CACHE_THROUGH"

Write the file synchronously to the under storage, and also try to write to the highest tier in a worker’s Alluxio
storage.

alluxio.wire.WRITE_TYPE_ THROUGH = "THROUGH"
Write the file synchronously to the under storage, skipping Alluxio storage.

alluxio.wire .WRITE_TYPE_ASYNC THROUGH = "ASYNC_THROUGH"
Write the file asynchronously to the under storage.

19

alluxio Documentation, Release 0.1.1

20 Chapter 3. Client Wire Objects

CHAPTER 4

Client Exceptions

Alluxio exceptions.

All exceptions thrown by al luxio.Client,alluxio.Reader,and alluxio.Writer are one of the follow-
ing exceptions:

¢ AlluxioError
e subclasses of Al luxioError
* HTTPError
* Python built-in exceptions
Exceptions raised by the requests library are wrapped by HTTPError.

class alluxio.exceptions.Status
A class representing RPC status codes.

The definitions are from https://github.com/Alluxio/alluxio/blob/master/core/common/src/main/java/alluxio/
exception/status/Status.java.

exception alluxio.exceptions.AlluxioError (status, message)
Base class for all Alluxio exceptions.

Parameters
e status (str) - The status defined in Status.
* message (str)— The error message.

exception alluxio.exceptions.AbortedError (message)
Exception indicating that the operation was aborted, typically due to a concurrency issue like sequencer check
failures, transaction aborts, etc.

See litmus test in FailedPreconditionException for deciding between
FailedPreconditionException, AbortedException, and UnavailableException.

Parameters message (str)— The error message.

21

https://github.com/Alluxio/alluxio/blob/master/core/common/src/main/java/alluxio/exception/status/Status.java
https://github.com/Alluxio/alluxio/blob/master/core/common/src/main/java/alluxio/exception/status/Status.java

alluxio Documentation, Release 0.1.1

exception alluxio.exceptions.AlreadyExistsError (message)
Exception indicating that an attempt to create an entity failed because one already exists.

Parameters message (str)— The error message.

exception alluxio.exceptions.CanceledError (message)
Exception indicating that an operation was cancelled (typically by the caller).

Parameters message (str)— The error message.

exception alluxio.exceptions.DataLossError (message)
Exception indicating unrecoverable data loss or corruption.

Parameters message (str)— The error message.

exception alluxio.exceptions.DeadlineExceededError (message)
Exception indicating that an operation expired before completion. For operations that change the state of the sys-
tem, this exception may be thrown even if the operation has completed successfully. For example, a successful
response from a server could have been delayed long enough for the deadline to expire.

Parameters message (str)— The error message.

exception alluxio.exceptions.FailedPreconditionError (message)
Exception indicating that operation was rejected because the system is not in a state required for the operation’s
execution. For example, directory to be deleted may be non-empty, an rmdir operation is applied to a non-
directory, etc.

A litmus test that may help a service implementor in deciding between FailedPreconditionException,
AbortedException, and UnavailableException:

1. Use UnavailableException if the client can retry the failed call.

2. Use AbortedException if the client should retry at a higher-level (e.g., restarting a read-modify-write se-
quence).

3. Use FailedPreconditionException if the client should not retry until the system state has been explicitly
fixed. E.g., if an “rmdir” fails because the directory is non-empty, FailedPreconditionException should be
thrown since the client should not retry unless they have first fixed up the directory by deleting files from
it.

4. Use FailedPreconditionException if the client performs conditional REST Get/Update/Delete on a resource

and the resource on the server does not match the condition. E.g. conflicting read-modify-write on the same
resource.

Parameters message (str)— The error message.

exception alluxio.exceptions.InternalError (message)
Exception representing an internal error. This means some invariant expected by the underlying system has been
broken. If you see one of these errors, something is very broken.

Parameters message (str)— The error message.

exception alluxio.exceptions.InvalidArgumentError (message)
Exception indicating that a client specified an invalid argument. Note that this differs from
FailedPreconditionException. It indicates arguments that are problematic regardless of the state
of the system (e.g., a malformed file name).

Parameters message (str)— The error message.

exception alluxio.exceptions.NotFoundError (message)
Exception indicating that some requested entity (e.g., file or directory) was not found.

Parameters message (str)— The error message.

22 Chapter 4. Client Exceptions

alluxio Documentation, Release 0.1.1

exception alluxio.exceptions.OutOfRangeError (message)
Exception indicating that and operation was attempted past the valid range. E.g., seeking or reading past end of
file.

Unlike InvalidArgumentException, this error indicates a problem that may be fixed if the system state
changes. For example, a 32-bit file system will generate InvalidArgumentException if asked to read
at an offset that is not in the range [0,2"32-1], but it will generate Out OfRangeException if asked to read
from an offset past the current file size.

There is a fair bit of overlap between FailedPreconditionException and OutOfRangeException.
We recommend using Out OfRangeException (the more specific error) when it applies so that callers who
are iterating through a space can easily look for an OutOfRangeExcept ion to detect when they are done.

Parameters message (str)— The error message.

exception alluxio.exceptions.PermissionDeniedError (message)
Exception indicating that the caller does not have permission to execute the specified operation. It must not be
used for rejections caused by exhausting some resource (use ResourceExhaustedException instead for
those exceptions). It must not be used if the caller cannot be identified (use UnauthenticatedException
instead for those exceptions).

Parameters message (str)— The error message.

exception alluxio.exceptions.ResourceExhaustedError (message)
Exception indicating that some resource has been exhausted, perhaps a per-user quota, or perhaps the entire file
system is out of space.

Parameters message (str)— The error message.

exception alluxio.exceptions.UnauthenticatedError (message)
Exception indicating that the request does not have valid authentication credentials for the operation.

Parameters message (str)— The error message.

exception alluxio.exceptions.UnavailableError (message)
Exception indicating that the service is currently unavailable.

This is a most likely a transient condition and may be corrected by retrying with a backoff.

See litmus test in FailedPreconditionException for deciding between
FailedPreconditionException, AbortedException, and UnavailableException.

Parameters message (str)— The error message.

exception alluxio.exceptions.UnimplementedError (message)
Exception indicating that an operation is not implemented, or not supported, or not enabled.

Parameters message (str)— The error message.

exception alluxio.exceptions.UnknownError (message)
Exception representing an unknown error. An example of where this exception may be thrown is if a Status
value received from another address space belongs to an error-space that is not known in this address space.
Also errors raised by APIs that do not return enough error information may be converted to this error.

Parameters message (str)— The error message.

alluxio.exceptions.new_alluxio_exception (status, message)
Creates the appropriate exception for status.

If status is not defined in Status, then creates a general Al luxioError.
Parameters

e status (str) - The status defined in Status.

23

alluxio Documentation, Release 0.1.1

* message (str)— The error message.

exception alluxio.exceptions.HTTPError
Any error raised by the underlying HTTP client library will be wrapped by this error.

24 Chapter 4. Client Exceptions

Python Module Index

a

alluxio.client,1
alluxio.exceptions, 21
alluxio.option, Il
alluxio.wire, 15

25

alluxio Documentation, Release 0.1.1

26 Python Module Index

Index

A

AbortedError, 21

alluxio.client (module), 1
alluxio.exceptions (module), 21
alluxio.option (module), 11
alluxio.wire (module), 15
AlluxioError, 21
AlreadyExistsError, 21

B

Bits (class in alluxio.wire), 15

BITS_ALL (in module alluxio.wire), 16
BITS_EXECUTE (in module alluxio.wire), 15
BITS_NONE (in module alluxio.wire), 15
BITS_READ (in module alluxio.wire), 16
BITS_READ_EXECUTE (in module alluxio.wire), 16
BITS_READ_WRITE (in module alluxio.wire), 16
BITS_WRITE (in module alluxio.wire), 15
BITS_WRITE_EXECUTE (in module alluxio.wire), 16
BlockInfo (class in alluxio.wire), 16

BlockLocation (class in alluxio.wire), 16

C

CanceledError, 22

Client (class in alluxio), 1

close() (alluxio.Client method), 1

close() (alluxio.client.Reader method), 8
close() (alluxio.client. Writer method), 9
create_directory() (alluxio.Client method), 1
create_file() (alluxio.Client method), 2
CreateDirectory (class in alluxio.option), 11
CreateFile (class in alluxio.option), 11

D

DatalLossError, 22
DeadlineExceededError, 22
Delete (class in alluxio.option), 12
delete() (alluxio.Client method), 3

E

Exists (class in alluxio.option), 12
exists() (alluxio.Client method), 3

F

FailedPreconditionError, 22
FileBlockInfo (class in alluxio.wire), 16
FileInfo (class in alluxio.wire), 16

Free (class in alluxio.option), 12

free() (alluxio.Client method), 3

G

get_status() (alluxio.Client method), 4
GetStatus (class in alluxio.option), 12

H

HTTPError, 24

InternalError, 22
InvalidArgumentError, 22

L

list_status() (alluxio.Client method), 4

ListStatus (class in alluxio.option), 12

LOAD_METADATA_TYPE_ALWAYS (in module al-
luxio.wire), 18

LOAD_METADATA_TYPE_NEVER (in module al-
luxio.wire), 17

LOAD_METADATA_TYPE_ONCE (in module al-
luxio.wire), 17

LoadMetadataType (class in alluxio.wire), 17

Is() (alluxio.Client method), 4

M

Mode (class in alluxio.wire), 18
Mount (class in alluxio.option), 12
mount() (alluxio.Client method), 5

27

alluxio Documentation, Release 0.1.1

N

new_alluxio_exception() (in module alluxio.exceptions),
23
NotFoundError, 22

O

open() (alluxio.Client method), 5
open_file() (alluxio.Client method), 6
OpenFile (class in alluxio.option), 12
OutOfRangeError, 22

P

PermissionDeniedError, 23

R

read() (alluxio.Client method), 7

read() (alluxio.client.Reader method), 8

READ_TYPE_CACHE (in module alluxio.wire), 18

READ_TYPE_CACHE_PROMOTE (in module al-
luxio.wire), 18

READ_TYPE_NO_CACHE (in module alluxio.wire), 18

Reader (class in alluxio.client), 8

ReadType (class in alluxio.wire), 18

Rename (class in alluxio.option), 13

rename() (alluxio.Client method), 7

ResourceExhaustedError, 23

S

set_attribute() (alluxio.Client method), 7
SetAttribute (class in alluxio.option), 13
Status (class in alluxio.exceptions), 21

T

TTL_ACTION_DELETE (in module alluxio.wire), 18
TTL_ACTION_FREE (in module alluxio.wire), 18
TTLAction (class in alluxio.wire), 18

U

UnauthenticatedError, 23
UnavailableError, 23
UnimplementedError, 23
UnknownError, 23

Unmount (class in alluxio.option), 12
unmount() (alluxio.Client method), 7

W

WorkerNetAddress (class in alluxio.wire), 18

write() (alluxio.Client method), 8

write() (alluxio.client.Writer method), 9

WRITE_TYPE_ASYNC_THROUGH (in module al-
luxio.wire), 19

WRITE_TYPE_CACHE_THROUGH (in module al-
luxio.wire), 19

WRITE_TYPE_MUST_CACHE
luxio.wire), 19

WRITE_TYPE_THROUGH (in module alluxio.wire), 19

Weriter (class in alluxio.client), 8

WriteType (class in alluxio.wire), 19

(in module al-

28

Index

	Client Interface
	Client Options
	Client Wire Objects
	Client Exceptions
	Python Module Index

